
Poster: FPFlow: Detect and Prevent Browser
Fingerprinting with Dynamic Taint Analysis

Tianyi Li∗, Xiaofeng Zheng†, Kaiwen Shen†, Xinhui Han∗
∗Peking University

{litianyi, hanxinhui}@pku.edu.cn
†Tsinghua University

{zxf19, skw17}@mails.tsinghua.edu.cn

Abstract—Browser fingerprint is the combination of a set of
browser attributes collected by the visited website, which can
uniquely identify a web user. More and more websites use
browser fingerprints to track users’ browsing behavior, leading
to severe violation to user privacy. In this poster, we proposed
FPFlow, a dynamic JavaScript taint analysis framework to detect
and prevent browser fingerprinting. FPFlow monitors the whole
process of browser fingerprinting, including collecting attributes,
generating fingerprint, and sending it to the remote server. We
evaluated FPFlow on Alexa top 10,000 websites. Our experiments
showed that FPFlow could effectively detect browser finger-
printing. We found 71.3% of the websites potentially performing
browser fingerprinting and revealed how browser fingerprinting
is applied in real-world websites. We also showed that FPFlow
could prevent browser fingerprinting with an acceptable runtime
overhead without affecting JavaScript functionality.

Index Terms—Browser Fingerprinting, Taint Analysis,
Privacy-Enhancing Technology

I. INTRODUCTION

Browser fingerprinting [1] is an online user tracking tech-
nique that collects browser-specific information, such as user
agent, screen resolution, and installed fonts, etc., to uniquely
identify the client user. By performing rendering tasks with
APIs such as Canvas to extract hardware features, browser
fingerprinting can even be used to track users across browsers.

Existing fingerprinting detection and prevention methods
rely on JavaScript API access patterns or known scripts. Some
”protection” methods even make the browser easier to be
fingerprinted [2]. Modern browsers like Firefox have carried
out countermeasures against browser fingerprinting. However,
we found that Amiunique [3], a website investigating browser
fingerprinting, can still uniquely identify the latest version of
browsers.
Our Work. In this poster, we proposed an information flow
based fingerprinting detection method. We consider a website
as performing browser fingerprinting if it collects fingerprint-
ing attributes and sends them to the remote server. We propose
an in-browser dynamic taint analysis framework FPFlow by
extending Chromium browser.
FPFlow marks 208 fingerprinting related attributes as taint

source and 5 network-related APIs as taint sink. The V8 engine
propagates taint between objects during JavaScript execution.
When a request is initiated, FPFlow marks the request as a
”fingerprinting request” if its URL or body contains a certain

number of tainted data. FPFlow can also prevent browser
fingerprinting by intercepting such fingerprinting requests.

II. MOTIVATION

Fig. 1: The Process of Browser Fingerprinting.

Browser fingerprinting is a complex process in the
JavaScript execution context. To better understand browser
fingerprinting, we split the process of browser fingerprinting
into five stages, as shown in Figure 1. Existing detection and
prevention methods can be classified into two categories:

(1) Existing detection and prevention methods [4] against
Canvas-based fingerprinting monitor the access to specific
APIs on stage 2. However, they could not confirm that the
rendered data is sent to the remote server, which leads to false
positives.

(2) Request checking based methods [5] detect and prevent
browser fingerprinting by matching fingerprinting related at-
tributes in requests on stage 4. This method relies on known
browser attributes value, so it cannot detect rendering-based
fingerprinting like Canvas fingerprinting.
FPFlow tracks the entire life cycle of fingerprinting at-

tributes from stage 2 to stage 4 with information flow analysis,
and it can detect both browser property-based and rendering-
based fingerprinting.

III. DESIGN AND CHALLENGES

Figure 2 shows the abstract architecture of FPFlow.
FPFlow extends the JavaScript engine V8 and DOM engine
Blink of Chromium with taint tracking capabilities.

(1) When visiting a site, V8 first parses the JavaScript source
code into AST and then generates the bytecode. FPFlow
considers taint propagation in object property load, basic
computation operations, and native function calls. FPFlow
instruments additional bytecodes for taint propagation in byte-
code generation phase.



Fig. 2: Abstract Architecture of FPFlow.

(2) When JavaScript accesses the fingerprinting-related
APIs in DOM, the V8 object is marked as tainted. FPFlow
marks 208 fingerprinting attributes as taint source, including
property-based attributes and rendering-based attributes.

(3) FPFlow maintains a taint table in V8 instance to store
the taints carried by objects. During the script execution,
FPFlow propagates taint between JavaScript objects and
updates the taint table.

(4) When JavaScript tries to send a web request, FPFlow
checks whether the request is fingerprinting request by check-
ing whether the parameter of the request (URL, body, etc.)
carries taints. If FPFlow identifies a fingerprinting request,
FPFlow marks it, and can also drop it before performing the
request according to user configuration.

(5) When a fingerprinting request is identified, FPFlow logs
the target URL, the carried taints, the request method, and the
stack trace of the request. FPFlow also logs the DOM access
from JavaScript to compare with previous studies.

Besides, there are two main challenges we solved. First,
FPFlow should only propagate taint for V8 native functions
implemented in C++. We solve this problem by collecting the
address of all native functions during the V8 bootstrap. Sec-
ond, a runtime fingerprinting protection framework requires a
low overhead. FPFlow reduces the overhead by optimizing
the storage and propagation of JavaScript object taint.

IV. PRELIMINARY EVALUATION

We crawled the homepage of Alexa top 10,000 sites with
FPFlow and analyzed the adoption of browser fingerprinting.
A. Detection of browser fingerprinting.

The experiment showed that FPFlow could detect both at-
tributes and rendering based fingerprinting. In our experiment,
we found 7,132 sites (71.3%) were potentially performing
browser fingerprinting, and 6,654 of them sent user data to
third-party domains. The most used tracking services and
fingerprinting attributes are shown in table I and II.
Limitations. FPFlow uses dynamic taint analysis to analyze
information flow, leading to potential false positives and false
negatives. We are currently working on evaluating the accuracy
of our detection result.
B. Script behavior.
Tracker loader. By analyzing the initiator of the fingerprinting
requests, we found some scripts that try to load many other
tracking scripts. We refer to these scripts as tracker loader.
Different sites using tracker loader have different configura-
tions to decide what tracking scripts to load.

TABLE I: Most Used Tracking Services

Tracker Sites Tracker Sites
doubleclick.com 5,745 rubiconproject.com 1,283

google-analytics.com 4,941 adnxs.com 729
google.com 1,941 criteo.com 535

googlesyndication.com 1,672 rlcdn.com 499
facebook.com 1,556 casalemedia.com 486

TABLE II: Most Used Fingerprinting Attributes

Attribute Sites Attribute Sites Attribute Sites
Cookie 6,829 AppVersion 4,823 CookieEnabled 3,334

UserAgent 6,827 Resolution 3,483 Language 3,310
History 4,848 Platform 3,428 Plugin 2,790

Fingerprint encoding. We found some sites encode the
fingerprint attributes before sending them to the remote server,
especially for Canvas fingerprint. However, we found it is hard
to analyze how many sites are encoding browser fingerprint.
Fingerprinting beacon refers to many (over 5) fingerprinting
requests sent to a single URL during browsing. We found 963
sites are sending fingerprinting beacons, and most of the bea-
con requests carry different data each time. We found function
names like trackEvents and setInterval in the stack
trace of these requests. We can determine by the function
names that the trackers are monitoring the user’s behavior at
regular intervals or when a certain event is triggered.
C. Prevention of browser fingerprinting.

Our experiment shows that FPFlow can successfully block
the fingerprinting requests. We manually browsed 50 sites
and did not find any abnormalities. The average protection
overhead of FPFlow is 9.2%.

V. CONCLUSION

In this poster, we propose FPFlow, a dynamic taint anal-
ysis framework to detect and prevent browser fingerprinting.
FPFlow marks taint attributes as taint source and propagates
taint during JavaScript execution. It checks whether web re-
quests contain taints before they are sent out. Our preliminary
result shows that FPFlow can detect and prevent browser
property-based and rendering-based fingerprinting with accept-
able overhead. We also revealed the behavior of fingerprinting
scripts such as tracker loader and fingerprinting beacon. We are
currently working on evaluating the accuracy of the detection
result.

REFERENCES

[1] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser fingerprint-
ing: A survey,” ACM Transactions on the Web (TWEB), vol. 14, no. 2,
pp. 1–33, 2020.

[2] B. A. Azad, O. Starov, P. Laperdrix, and N. Nikiforakis, “Short paper-
taming the shape shifter: Detecting anti-fingerprinting browsers,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2020, pp. 160–170.

[3] Amiunique. [Online]. Available: https://amiunique.org/fp
[4] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site

measurement and analysis,” in Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 2016, pp. 1388–
1401.

[5] N. M. Al-Fannah, W. Li, and C. J. Mitchell, “Beyond cookie monster am-
nesia: Real world persistent online tracking,” in International Conference
on Information Security. Springer, 2018, pp. 481–501.


	abstract-FPFlow

