
Poster: gbdt-rs: Fast and Trustworthy Gradient
Boosting Decision Tree

Tianyi Li1, Tongxin Li2, Yu Ding2, Yulong Zhang2, Tao Wei2, Xinhui Han1
1Peking University 2 Baidu X-Lab
{litianyi, hanxinhui}@pku.edu.cn

{litongxin, dingyu02, ylzhang, lenx}@baidu.com

Abstract—For data analysis services, the capability of preserv-
ing user privacy has become an eagerly demanded trait. However,
most existing approaches are either unsound to close some
major information leakage chanels or prohibitively expensive for
practical deployment. We propose gbdt-rs , a secure and fast
implementation of the gradient boosting decision tree algorithm,
which is widely used in data mining and machine learning tasks.
gbdt-rs is designed to fit traditional computing platforms as
well as hardware-enforced trusted environments, i.e., Intel SGX
secure enclaves. gbdt-rs is coded in the Rust programming
language to exterminate memory errors, while its performance is
barely sacrificed due to sophisticatedly optimized memory access
patterns. Our experiments show that gbdt-rs can provide up
to 10x speedup on inference tasks compared to XGBoost, a
reputed C++ implementation of the same algorithm. In addition,
gbdt-rs is highly auditable due to its relatively small code base.

I. INTRODUCTION

Privacy and security has risen as one of the major concerns
about big data analysis. Both the academia and industry
seek high-assurance privacy-preserving data analysis solutions
that scale to tremendous amounts of sensitive data. Among
various proposed solutions, hardware-assisted trusted compu-
tation is drawing more attention for being able to deliver
privacy-preserving general-purpose computation with modest
cost. Competitor approaches, such as the Fully Homomorphic
Encryption (FHE) and multi-party secure computation, are
more than 1000 times slower than hardware-assisted solutions
and incur bloated communication complexity. To the best our
knowledge, hardware-enabled trusted computing is the only
practical solution to privacy-preserving data analysis at this
point.

In this paper, we propose gbdt-rs, a fast and trustworthy
implementation of the gradient boosting decision tree (GBDT)
algorithm. gbdt-rs is able to run both inside and outside
Intel SGX secure enclaves. Written in Rust, gbdt-rs benefits
from an advanced type system to minimize the occurence of
memory bugs. The code base of gbdt-rs is as small as about
2000 lines of code, making it extremely auditable. Moreover,
by utilizing highly-optimized memory access patterns, the
performance of gbdt-rs is barely compromised as the cost
of additional security. Compared to XGBoost [1], one of the
most reputed and widely deployed GBDT implementation,
gbdt-rs can be up to 10 times faster on inference tasks.
Even when exeucted in Intel SGX enclaves, the slow down

is confined within 10%. Overall, we make the following
contributions in this work:

• We show some deep insight on secure and trustworthy
data analysis software stack and propose a novel approach
by leveraging Rust and hybrid memory-safety rules-of-
thumb.

• We use gradient boosting decision tree as a concrete
example to show how the methodology can help achieve
strong security guarantees, auditable trustworthiness, as
well as good performance.

• We share the details about a safe and secure implemen-
tation of the gradient boosting decision tree and demon-
strate its uncompromized performance with experiments.

The code of gbdt-rs is hosted on Github1 which will
be made public in the near future. The project is based on
rust-sgx-sdk [2] and follows the hybrid memory-safety rules-
of-thumb proposed in that paper.

II. CHALLENGES AND DESIGN

One of the design principles for gbdt-rs is “tiny and
clean.” Its implementation seems to be pretty straightforward.
The major challenge for this 2000-line project is to provide
memory-safety guarantees and trustworthiness for the entire
software stack. One of its competitors is XGBoost. XGBoost
contains about 15K lines of C and C++ code with immediate
dependencies on additional 66.5K lines of third-party code2.
The third party code further depends on other libraries. The
software stack of XGBoost is too complicated to be audited
and it is extremely difficult, if not impossible, to formally
prove any memory-safety property about it.

To simulteneously achieve safety, security, auditability, and
satisfying performance, we chose Rust as the coding language
of gbdt-rs. We leverage the rich semantics and strict
syntax of Rust to properly design and implement each level
of APIs. With the powerful type/lifetime/borrowship checker
of Rust, and its official lint tool rust-clippy, we guarantee
that gbdt-rs is appropriately designed and faithfully im-
plemented. An expert can easily examine the implementation
of each function and establish trust in the library.

Rust provides strong memory-safety guarantees and it has
been partially verified [4]. The verification results indicate

1https://github.com/mesalock-linux/gbdt-rs
220K lines of dmlc-core, 6.5K lines of rabit and 40K lines of cub



TABLE I
INFERENCING PERFORMANCE IN REGULAR ENVIRONMENT

Test i7-8086K/Linux i7-8850H/macOS Intel J5005/Linux

XGBoost 10K 5.6494s 13.0135s 34.5524s
gbdt-rs 10K 1.4221s 1.8590s 3.4988s
XGBoost 100K 57.1083s 129.1581s 345.6155s
gbdt-rs 100K 15.9581s 24.1202s 45.1806s

that Rust guarantees memory safety in safe code blocks.
Although Rust indeed provides unsafe code blocks where
checkers are temporarily disabled, we do not have any
unsafe code in gbdt-rs. Every line of gbdt-rs is
checked by the Rust compiler and memory-safety is guaran-
teed.

Another key challenge is deterministics. A system is said to
be “trusted” [3] when it satisfies an individual’s expectations
in providing a particular service. Although the requirement is
straightforward to state and understand, it can be extremely
difficult to implement such a deterministic system, mainly
because current systems use privileged resource management.
Typically, the OS kernel and VM hypervisor have higher
privileges to intercept and control the user applications. To
minimize interactions with those previleged entities and there-
fore their impacts, gbdt-rs is designed to be single-threaded
and the number of I/O requests is reduced to the lowest
possible level. This design decision closely aligns with the
programming model of recent IoT/Intel SGX devices where
limited/no threading/IO exists. We expect that gbdt-rs can
be seamlessly deployed on IoT devices as a trustworthy and
lightweight gradient boosting decision tree inference engine.

Performance optimization is the most attractive of
gbdt-rs. We carefully profiled XGBoost and the results
reveals that the major factor is the speed of memory ac-
cess. To this end, we use contiguous memory in gbdt-rs
to store the trees and this solution increases the locality
of reference significantly. One step further, we find that
CPU cache works more efficiently on caching model in-
stead of caching data. So gbdt-rs conducts inferencing
on each individual tree with batched data. In a classic set-
ting of {nfeature=32,depth=6,ntree=10000}, the
gbdt-rs is 10x faster than single-threaded XGBoost. This
optimization is SGX-friendly and benefits SGX enclaves in a
higher acceleration ratio, since Intel SGX v1 only provides
128MB EPC. The current page-fault driven software-based
memory swapping mechanism of Intel SGX causes 1000x slow
down on random access, but only 6x on sequential memory
access. So the optimization is almost perfect for Intel SGX.

Multi-threading gbdt-rs supports multi-threading be-
cause it provides thread-safety in almost all of its APIs.
One could use multi-threading mode to boost inference tasks.
However, the multi-threading mode depends on the scheduler
of OS kernel which brings in more uncertainty into the solu-
tion. We recommend considering about the trade-off between
safety/trustworthiness and performance before enabling the
multi-threading mode.

Easy to use gbdt-rs can directly use the model generated

TABLE II
SGX ENCLAVE PERFORMANCE TEST

Test 10K 100K

XGBoost 1-thread 34.5224s 345.6155s
XGBoost 4-thread 8.4867s 86.4985s
XGBoost 8-thread 8.2702s 83.8158s
gbdt-rs 3.4988s 45.1806s
gbdt-rs SGX 3.9662s 174.9028s
gbdt-rs SGX 3.9662s 36.0156s(batchsize=10K)

by XGBoost. One can easily load the model and benefit from
the performance boost by using gbdt-rs.

Optional Training support gbdt-rs provides APIs for
training and saving model to disk. At this time, we do not
provide multi-thread support for training in gbdt-rs.

III. PRELIMINARY RESULTS

a) Trustworthiness: gbdt-rs consists of 2000 lines of
Rust codes with clear API definition and is organized well. So
the code can prove itself on trustworthiness. This philosophy
follows “proof without words”. Challengers who doubt on its
honesty could spend some time on code auditing and then
establish the trust. And the Rust compiler guarantees its safety.

b) Performance: gbdt-rs provides high acceler-
ate rate on inferencing. We the following testbeds: i7-
8086K/Linux stands for the most powerful desktop platform.
i7-8850H/macOS is the latest Macbook Pro. Intel J5005/Linux
is classic IoT platforms. We use the aforementioned model set-
tings of {nfeature=32,depth=6,ntree=10000} and
two input dataset: 10K and 100K. Results of this regular
performance test could be found in table I. We can see
that gbdt-rs provides 4-10x faster on 10K dataset and 4-
7x faster on 100K dataset. Table II shows the result of SGX
performance test. we can see that gbdt-rs SGX has 13%
slowdown on 10K datasets but still 8.7x faster than single-
threaded XGBoost and 2.34x faster than 8-threaded XGBoost.
On the SGX test, we test gbdt-rs with 100K dataset in
two modes: one single 100K, and 10 group of 10K (batched).
Theoretically, the test with one single 100K data would be 6x
slower then that of 10x10k due to the 6x slowdown caused by
memory swapping and the results confirmed that. We can see
the time cost in batched 100k is almost 10x of 10K, which
means gbdt-rs is a linear time implementation.

REFERENCES

[1] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, pages 785–794, New
York, NY, USA, 2016. ACM.

[2] Y. Ding, R. Duan, L. Li, Y. Cheng, Y. Zhang, T. Chen, T. Wei, and
H. Wang. Poster: Rust sgx sdk: Towards memory safety in intel sgx
enclave. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, pages 2491–2493,
New York, NY, USA, 2017. ACM.

[3] D. A. Fisher, J. M. McCune, and A. D. Andrews. Trust and trusted
computing platforms. Technical report, CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST, 2011.

[4] F. Wang, F. Song, M. Zhang, X. Zhu, and J. Zhang. Krust: A formal
executable semantics of rust. In 2018 International Symposium on
Theoretical Aspects of Software Engineering (TASE), pages 44–51, Aug
2018.


